PRINCIPAL COMPONENT ANALYSIS OFGENERATIONAL PREFERENCES REGARDING OVER-THE-TOP SERVICES – A HUNGARIAN CASE STUDY
DOI:
https://doi.org/10.7251/ACE2339009TKeywords:
over-the- top services, principal component analysis, generational differences, perception, manipulation, enjoymentAbstract
The rise of video streaming services has not only increased the popularity of the platforms available, but has also changed the way households consume content, displacing the options offered by traditional television. The orientation was to apply a specific interdisciplinary scientific approach, combining economics and sociology, due to the research area of the study. The advantages/disadvantages of streaming platforms may play a role in the perceptions of different age groups of users by the service provider they choose. The aim of the research is to focus on the different video streaming consumption habits of the various generations (Generation X, Generation Y, Generation Z) as customers of Netflix, HBO Max, and Disney+, the widely known video streaming providers as reflected in the literature review. A Likert-scale questionnaire survey was considered the most appropriate method to achieve this objective. In order to test the hypothesis on the relationship between generations and video streaming usage a principal component analyses by generation was applied. The separation of variables resulted in the establishment of two groups, namely manipulation (indicating the influence of the traditional way of life) and enjoyment (influencing the choice and customer retention of service providers). The results of the study indicate that the generational characteristics of consumers partly show different patterns of service use, and that the impact of service use on traditional lifeways differs between generations. The analysis highlights the importance of further researches in this area, as the factors explored can be extended to other important issues in the future.
References
Ahn, J. (2022). Generation Z and Its OTT Usage Patterns: The Case of Netflix in Korea. International Journal of Contents, 18(1), 65-75. https://doi.org/10.5392/ IJoC.2022.18.1.065
Ali, B., & Szikora, P. (2017). Az Y generáció és az internet kapcsolata. In Á. Csiszárik- Kocsir (Ed.), Vállalkozásfejlesztés a XXI. században VII. tanulmánykötet (pp. 11-23). Óbudai Egyetem, Budapest. http://kgk.uni-obuda.hu/sites/default/files/ Vallalkozasfejlesztes-a-XXI-szazadban-VII_5.pdf
Aly Tovar, R.J. (2021). To Stream or Not to Stream: Impact on the Economics of Content Industries. [Doctoral dissertation, Université Paris-Nord]. https://theses.hal. science/tel-03716062/document.
Arriaga, P., Alexandre, J., Postolache, O., Fonseca, M. J., Langlois, T., & Chambel, T. (2019). Why Do We Watch? The Role of Emotion Gratifications and Individual Differences in Predicting Rewatchability and Movie Recommendation. Behavioral Sciences, 10(1), 8. https://doi.org/10.3390/bs10010008
Ates, S. (2022). A Validity and Reliability Study on Developing a Scale for Assessing Classroom Teachers’Attitudes Towards Illustrated Children’s Books. Educational Policy Analysis and Strategic Research, 17(3), 222-237. https://doi.org/10.29329/ epasr.2022.461.11
Ayten, A., Bulat Demir, S., & Inceismail, E. (2019). A Study of Generation Z Viewing Habits in Context of Uses and Gratification Theory: The Protector Netflix Series Case. In D. Yengin, & A. Algül (Eds.) CTC 2019 papers (pp. 1-11). https://doi. org/10.7456/ctc_2019_01
Barna, I., & Székelyi, M. (2008). Túlélőkészlet az SPSS-hez - Többváltozós elemzési technikákról társadalomkutatók számára. Typotex Kiadó, Budapest.
Bolton, R., Parasuraman, A.P., Hoefnagels, A., Migchels, N., Kabadayi, S., Gruber, T., Komarova, Y., & Solnet, D. (2013). Understanding Gen Y and their use of social media: A review and research agenda. Journal of Service Management, 24(3), 245-267. https://doi.org/10.1108/09564231311326987
Buda, A. (2019). Generations, Social Groups in the 21st Century. Magyar Tudomány, 180(1), 120–129. https://doi. org/10.1556/2065.180.2019.1.12
Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Routledge, New York.
Carrillo-Durán, M.V., Ruano-López, S., Fernández Falero, M. R., & Trabadela Robles, J. (2022). Understanding How Baby Boomers Use the Internet and Social Media to Improve the Engagement with Brands. Comunicação e Sociedade, 41, 261–284. https://doi. org/10.17231/comsoc.41(2022).3516
Čerepinko, D., Bagarić, Z., & Dujić, L. (2019). Digital Video Generation and Their Viewing Habits: The Death of Television News? Collegicum Antropologicum, 43(4), 1-9. https://www.researchgate.net/publication/341579994_Digital_Video_ Generation_and_Their_Viewing_Habits_The_Death_of_Television_News
Cha, J. (2014). Usage of video sharing websites: Drivers and barriers. Telematics and Informatics, 31(1), 16–26. https://doi.org/10.1016/j.tele.2012.01.003
Chakraborty, D., Siddiqui, M., Siddiqui, A., Paul, J., Dash, G., & Mas, F.D. (2023). Watching is valuable: Consumer views – Content consumption on OTT platforms. Journal of Retailing and Consumer Services, 70, 103148. https://doi. org/10.1016/j.jretconser.2022.103148.
Chou, C., & Bentler, P.M. (1995). Estimates and tests in structural equation modeling. In Hoyle, R.H. (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 37-55). Sage Publication, Thousand Oaks, CA.
Cirilli, E., & Nicolini, P. (2019). Digital Skills and Profile of Each Generation: A Review. International Journal of Developmental and Educational Psychology INFAD Revista de Psicología, 1(2), 487-496. https://doi.org/10.17060/ijodaep.2019. n1.v3.1525
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
Csáki, Gy. (2013). Globalizáció és gazdasági szuverenitás. Magyar Tudomány, 174(4), 392-400. https://epa.oszk.hu/00600/00691/00115/pdf/EPA00691_mtud_2013_04
_392-400.pdf
Csanády, V., Horváth-Szováti, E., & Szalay, L. (2013). Alkalmazott statisztika. Nyugat- magyarországi Egyetem. Sopron.
Csutorás, G.Á. (2020). Az Y generációs munkatársak magatartási lehetőségei a közigazgatási szerveknél. [Doctoral dissertation, Nemzeti Közszolgálati Egyetem]. https://antk.uni-nke.hu/document/akk-copy-uni-nke-hu/Disszertációtervezet%20
-%20Csutorás%20Gábor.pdf
Culp-Roche, A., Hampton, D., Hensley, A., Wilson, J., Thaxton-Wiggins, A., Otts, J. A., Fruh, S. M., & Moser, D. K. (2020). Generational Differences in Faculty and Student Comfort with Technology Use. Sage Open Nursing, 6(1), 1-6. https://doi. org/10.1177/2377960820941394
Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1(1), 16–29. https://doi.org/10.1037/1082-989X.1.1.16
Dabija, D. C., Băbuţ, R., & Lugojan, M. I. (2016). Information Search Behaviour Based on Social Media. A Generational Perspective in Romania. In I. Plăiaş, & R. Ciornea (Eds.), Marketing from Information to Decision. 9th Edition Conference Proceedings (pp. 63-64).
Dabija, D. C., Bejan, B. M., & Tipi, N. (2018). Generation X versus Millennials communication behaviour on social media when purchasing food versus tourist services. E+M Ekonomie a Management, 21(1), 191–205. https://www.doi. org/10.15240/tul/001/2018-1-013
Dam, N., Hack-Polay, D., Rahman, M., & Mahmoud, A.B. (2023). Psychological Contract and Young Talent Retention in Vietnam: Development and Validation of a Hierarchical Reflective Structural Model. Businesses, 3(1), 36–51. https://doi. org/10.3390/businesses3010003
Dash, G., & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting & Social Change, 173(1). 1-11. https://doi.org/10.1016/j.techfore.2021.121092
Devadas, M. (2022). Purchase and continuation intentions of over-the-top (OTT) video streaming platform subscriptions: a uses and gratification theory perspective. Telematics and Informatics Reports, 5. 100006. https://doi.org/10.1016/j. teler.2022.100006
Diamantopoulos, A. & Sigaw, J.A. (2000). Introducing LISREL: A Guide for the Uninitiated. Sage Publications, London.
Dickey, I. J., & Lewis, W. F. (2010). Social Media Perceptions and Usage by Generation Y and Relevant Marketing Implications. Management and Marketing Faculty Publications, 33, 191-195. o. http://ecommons.udayton.edu/mgt_fac_pub/33
Downes, L. (2019, November 29). For Streaming Services, Navigating Generational Differences Is Key. Harvard Business Review. https://hbr.org/2019/11/ for-streaming-services-navigating-generational-differences-is-key?fbc lid=IwAR3jsFhzSdNN9nqlQIUGqA15dgZXAlEuGmrW1qwNMud_ MwcHEAoTRdWwA9w
Falk, R.F., & Miller, N.B. (1992). A Primer for Soft Modeling. University of Akron Press, Akron OH.
Fekete, M. (2018). E-idő, avagy a szabadidő behálózása – Digitális kultúrafogyasztás a digitális korban. Belvedere Meridionale, Szeged. https://publicatio.bibl.u-szeged. hu/16212/1/FM_eIdo_Belvedere.pdf
Flayelle, M., Maurage, P., Riddell Di Lorenzo, K., Vögele, C., Gainsbury, S. M., & Billieux, J. (2020). Binge-Watching: What Do we Know So Far? A First Systematic Review of the Evidence. Current Addiction Reports, 7. 44-60. https:// doi.org/10.1007/s40429-020-00299-8
Földvári, I. (2017). DQ projekt – Felkészült gyermeke a digitális jövőre? Új Köznevelés, 73(8–9), 18–27. https://folyoiratok.oh.gov.hu/uj-kozneveles/dq-projekt
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382–388. https://doi.org/10.2307/3150980
Gale, W. H., Gelfond, H., Fichtner, J., & Harris, B. H. (2020). The wealth of generations, with special attention to the millennials. Brookings, Washington.
George, D., & Mallery, M. (2010). SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 update (10th ed.). Pearson, Boston.
GKID Economic Research Co (2022). Streaming körkép 2022. https://gkid.hu/2022/06/09/ streaming-korkep-2022/
Glass, A. (2007). Understanding Generational Differences for Competitive Success. Industrial and Commercial Training, 39(2), 98-103. https://doi.org/10.1108/ 00197850710732424
Győri, Á., & Balogh, K (2020). How Does Social Integration Correlate with Intergenerational Differences in Educational Attainment? Social Science Review, 10(1), 1-24. https://doi.org/10.18030/socio.hu.2020.1.1
Haenlein, M., & Kaplan, A. M. (2004). A Beginner’s Guide to Partial Least Squares Analysis. Understanding Statistics, 3(4), 283–297. https://doi.org/10.1207/ s15328031us0304_4
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate Data Analysis, (7th Ed.). Prentice Hall, Upper Saddle River.
Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage, New York.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1-2), 1-12. https://doi.org/10.1016/j.lrp.2013.01.001
Hair, J. F., Ringle, C. M., & Sartedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139–151. https://doi.org/10.2753/ MTP1069-6679190202
Hair, J. F., Sarstedt, M., Ringle, C.M., & Mena, J.A. (2012). An Assessment of the Use of Partial Least Squares Structural Equation Modeling in Marketing Research. Journal of the Academy of Marketing Science, 40(3), 414–433. https://doi. org/10.1007/s11747-011-0261-6
Henseler, J., & Sarstedt, M. (2013). Goodness-of-Fit Indices for Partial Least Squares Path Modeling. Computational Statistics, 28(2), 565–580. https://doi.org/10.1007/ s00180-012-0317-1
Henseler, J., Christian, M. R., & Sinkovics, R. R. (2009). The Use of Partial Least Squares Path Modeling in International Marketing. Advances in International Marketing, 20, 277–319. https://doi.org/10.1108/S1474-7979(2009)0000020014
Herman, M. (2022, September 9). Worldwide Streaming Market Achieves Double- digit Growth In Q2 2022; smart TVs and Roku Dominate Global Viewing According to Conviva. Businesswire. https://www.businesswire.com/news/ home/20220909005099/en/Worldwide-Streaming-Market-Achieves-Double- digit-Growth-in-Q2-2022-Smart-TVs-and-Roku-Dominate-Global-Viewing- According-to-Conviva
Hernaus, T., & Pološki Vokic, N. (2014). Work Design for Different Generational Cohorts. Journal of Organizational Change Management, 27(4), 615-641. https:// doi.org/10.1108/jocm-05-2014-0104
Howe, N., & Strauss, W. (1991). Generations: The History of America’s Future, 1584 to 2069. William Morrow & Company, New York.
HULU (2021). Generation stream – Unpacking the streaming experience. https:// insights.disneyadvertising.com/wp-content/uploads/2021/09/Generation-Stream- Unpacking-the-Streaming-Experience.pdf
Jiang, J. (2018). Millennials stand out for their technology use, but older generations also embrace digital life. Pew Internet Research. http://www.pewresearch.org/ fact-tank/2018/05/02/millennials-stand-out-for-their-technology-use-but-older- generations-also-embrace-digital-life/
Jung, J., & Melguizo, Á. (2021, November 1). Is Your Netflix a Substitute for Your Telefunken? Evidence on the Dynamics of Traditional Pay TV and OTT in Latin America. SSRN. http://dx.doi.org/10.2139/ssrn.3959317
Kamber, T. (2017). Gen X: The Cro-Magnon of digital natives. Generations, 41, 48-54. Karasz, T. J., Nagybányai Nagy, O., Széll, K., & Takács, S. (2022). Cronbach-alfa: vele vagy nélküle? Magyar Pszichológiai Szemle, 77(1), 81-98. https://doi.
org/10.1556/0016.2022.00004
Katherine Chen, Y.-N. (2019). Competitions between OTT TV platforms and traditional television in Taiwan: A Niche analysis. Telecommunications Policy, 43(9), 101793. https://doi.org/10.1016/j.telpol.2018.10.006
Kazár, K. (2014). A PLS-útelemzés és alkalmazása egy márkaközösség pszichológiai érzetének vizsgálatára. Statisztikai Szemle, 92(1), 33-52. https://www.ksh.hu/ statszemle_archive/2014/2014_01/2014_01_033.pdf
Kenworthy, A. (2020). The streaming wars: The future of entertainment [Thesis, Claremont McKenna College]. https://scholarship.claremont.edu/cgi/viewcontent. cgi?article=3366&context=cmc_theses
Kertzer, D. I. (1983). Generation as a sociological problem. Annual Review of Sociology, 9, 125-149. https://doi.org/10.1146/annurev.so.09.080183.001013
Kim, S., Lee, C., Lee, J., & Kim, J. (2021). Over-the-top bundled services in the Korean broadcasting and telecommunications market: Consumer preference analysis using a mixed logit model. Telematics and Informatics, 61, 101599. https://doi. org/10.1016/j.tele.2021.101599
Koltai, J. (2013). A strukturális egyenletek modellezésének bemutatása egy komplex dizájnú kutatás (ISPJ) adatain keresztül. Szociológiai Szemle, 23(2), 31–51. https://szociologia.hu/dynamic/szociologia_szemle_2013_2_koltai_julia.PDF
Komár, Z. (2017). Generációelméletek. Új Köznevelés, 73(8–9), 14-16. https:// folyoiratok.oh.gov.hu/sites/default/files/journals/uj_kozneveles_2017_8-9_ online.pdf
Kópházi, A., Pétervári, Zs., & Balassa, É. (2018). Az X, Y és Z generációk kihívásai a 21. század munkaerőpiacán. Munkaügyi Szemle, 6, 49-55. https://drive.google.com/ file/d/1Xt0PIp2zwHyIRFCmBdcgwU714VS_JXPX/view
Kovács, A. (2015). Strukturális egyenletek modelljének alkalmazása a Közös Agrárpolitika 2013-as reformjának elemzésére. Statisztikai Szemle, 93(8-9) 801- 822. https://www.ksh.hu/statszemle_archive/2015/2015_08-09/2015_08-09_801. pdf
Kulcsár, Zs. (2008): Az integratív e-learning felé. https://mek.oszk.hu/06600/06695/ 06695.pdf
Kwon, O., & Wen, Y. (2010). An empirical study of the factors affecting social network service use. Computers in Human Behavior, 26(2), 254–263. https://doi. org/10.1016/j.chb.2009.04.011
Laor, T., & Galily, Y. (2022). Who’S clicking on on-demand? media consumption patterns of generations Y & Z. Technology in Society, 70, 102016. https://doi. org/10.1016/j.techsoc.2022.102016
Leung, L. (2007). Stressful Life Events, Motives for Internet Use, and Social Support among Digital Kids. Cyber Psychology & Behavior, 10(2), 204–214. https://doi. org/10.1089/cpb.2006.9967
Lissitsa, S., & Laor, T. (2021). Baby Boomers, Generation X and Generation Y: Identifying generational differences in effects of personality traits in on-demand radio use. Technology in Society, 64, 101526. https://doi.org/10.1016/j.techsoc.2021.101526 Lyons, S., & Kuron, L. (2014). Generational differences in the workplace: a review of the evidence and directions for future research. Journal of Organizational Behavior,
(1), 139-157. https://doi.org/10.1002/job.1913
MacKenzie, W. I., & Scherer, R. F. (2019). Millennial research on fleek: Suggestions for improving generational research design. The Journal of Social Psychology, 159(2), 119-124. https://doi.org/10.1080/00224545.2019.1572967
Maglio, T. (2022, August 11). Disney+ Soars, Netflix Sinks: Here’s How Many Subscribers 10 Key Streamers Have Now. Indiewire. https://www.indiewire. com/2022/08/how-many-subscribers-netflix-hbo-max-disney-plus-1234744445/ Malewar, S., & Bajaj, S. (2020). Acceptance of OTT video streaming platforms in India during COVID-19: extending utaut2 with content availability. Journal of Content, Community & Communication, 12(6), 89-106. https://doi.org/10.31620/
JCCC.12.20/09
Mannheim, K. (1952). The Sociological Problems of Generations. In Kecskeméti, P. (Ed.), Essays on the Sociology of Knowledge (pp. 163-195). Oxford University Press, New York.
Martínez-Sánchez, M. E., Nicolas-Sans, R., & Díaz, J. B. (2021). Analysis of the social media strategy of audio-visual OTTs in Spain: The case study of Netflix, HBO and Amazon Prime during the implementation of Disney +. Technological Forecasting and Social Change, 173, 121178. https://doi.org/10.1016/j.techfore.2021.121178
Matrix, S. (2014). The Netflix Effect: Teens, Binge Watching, and On-Demand Digital Media Trends. Jeunesse Young People Texts Cultures, 6(1), 119-138. https://doi. org/10.1353/jeu.2014.0002
McAlister, A. (2010). Teaching the Millennial Generation. American Music Teacher.
March, 13-15.
McCrindle, M. (2018, October 17). The ABC of XYZ: Understanding the Global Generations. McCrindle Publication. https://www.researchgate.net/publication/ 328347222_The_ABC_of_XYZ_Understanding_the_Global_Generations
McDaniel, B. T., & Coyne, S. M. (2016). “Technoference”: The interference of technology in couple relationships and implications for women’s personal and relational well-being. Psychology of Popular Media Culture, 5(1), 85–98. https:// doi.org/10.1037/ppm0000065
Meyer, J. (2022a). TV Streaming Report 2022, Austria. ZATTOO https://zattoo.com/at/ en/tv-streaming-report-2022-at
Meyer, J. (2022b). TV Streaming Report 2022, Germany. ZATTOO https://zattoo.com/ de/en/company/press/zattoo-tv-streaming-report-2022-de
Meyer, J. (2022c). TV Streaming Report 2022, Switzerland. ZATTOO https://zattoo.com/ ch/en/tv-streaming-report-2022-ch
Miskolczi, M., Munkácsy, A., & Földes, D. (2022). Autonomous Vehicles (Avs) in Tourism – Technology Acceptance from the Tourists’ Perspective. Turizmus Bulletin, 22(4), 4-15. https://doi.org/10.14267/TURBULL.2022v22n4.1
Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C.D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430–445. https://doi.org/10.1037//0033-2909.
3.430.
Mulla, T. (2022). Assessing the factors influencing the adoption of over-the-top streaming platforms: A literature review from 2007 to 2021. Telematics and Informatics, 69, 101797. https://doi.org/10.1016/j.tele.2022.101797
Münnich, Á., & Hidegkuti, I. (2012). Strukturális egyenletek modelljei: Oksági viszonyok és komplex elméletek vizsgálata pszichológiai kutatásokban. Alkalmazott Pszichológia, 2012/1, 77–102. http://ap.elte.hu/wp-content/uploads/2013/07/ AP_2012_1_Munnich_Hidegkuti.pdf
Murtaza, S. A., Molnár, E., & Szakács A. (2021). Digital Heroin – The Impact of Digital Gadgets on Developing Minds An Empirical Study on Growing Children of Lahore. Controller Info, 9(1), 55–58. https://doi.org/10.24387/CI.2021.1.10
Muthén, B. O., & Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of nonnormal Likert variables. British Journal of Mathematical and Statistical Psychology, 38(2), 171–189. https://doi.org/10.1111/j.2044-8317.1985. tb00832.x
Nagaraj, S., Singh, S., & Yasa, V. R. (2021). Factors affecting consumers’ willingness to subscribe to over-the-top (OTT) video streaming services in India. Technology in Society, 65, 101534. https://doi.org/10.1016/j.techsoc.2021.101534
Nagy, Á. A., Kemény, I., Szűcs, K., & Simon, J. (2017). Az ügyfélértékelési modellek szájreklámmal történő bővítésének irányai, eredményei. Marketing & Menedzsment, 51(EMOK), 14-27. https://journals.lib.pte.hu/index.php/mm/ article/view/790
Nagybányai Nagy, O. (2006). A pszichológiai tesztek reliabilitása. In S. Rózsa, O. Nagybányai Nagy, & A. Oláh (Eds.), A pszichológiai mérés alapjai: Elmélet, módszer és gyakorlati alkalmazás (pp. 103-116). Bölcsész Konzorcium. http:// mek.niif.hu/05500/05536/05536.pdf
Nathanson, M. (2022, September 14). How the Streaming Wars Alter the Media Landscape. Yale Insights. https://insights.som.yale.edu/insights/how-the- streaming-wars-will-alter-the-media-landscape
National Media and InfocommunicationsAuthority. (2020). Azelektronikus hírközlési piac fogyasztóinak vizsgálata. Internetes felmérés 2020. Nemzeti Média és Hírközlési Hatóság. https://nmhh.hu/dokumentum/218531/internetes_felmeres_2020.pdf
Negi, V., & Gupta, S. (2022). Impact of Over-the-Top (OTT) platform on the changing lifestyle of youth residing in Uttarakhand during Covid-19 pandemic lockdown. Journal of Positive School Psychology, 6(4), 3992-4014. https://journalppw.com/ index.php/jpsp/article/view/4000/2638
Nagy, T. J., & Bernschütz, M. (2017). Nemek közötti különbségek a technológia elfogadásában –a PLS-MGA alkalmazása. Statisztikai Szemle, 95(1), 51-77. https://core.ac.uk/download/pdf/78477607.pdf
NFI (2020, November 6). Kutatás: Egyre inkább a hétköznapok részévé válnak a streaming szolgáltatások, az online videótárak. https://nfi.hu/a-filmintezetrol/ hirek/kutatas-egyre-inkabb-a-hetkoznapok-reszeve-valnak-a-streaming- szolgaltatasok-az-online-videotarak.html
Nunnally, J. C. (1978). Psychometric testing. Mc Graw-Hill, New York.
Pálinkás-Purgel, Zs. (2019). Alfa generáció – a “digitális bébik” kora. Új Köznevelés, 75(1–2), 14-16. https://folyoiratok.oh.gov.hu/uj-kozneveles/alfa-generacio-a- digitalis-bebik-kora
Pattinson, S. (2022). 35 Streaming services statistics for 2022: Deep Dive Into Video & Music Streaming, Streaming Article. https://www.cloudwards.net/streaming- services-statistics/
Pea, R., Nass, C., Meheula, L., Rance, M., Kumar, A., Bamford, H., Nass, M., Simha, A., Stillerman, B., Yang, S., & Zhou, M. (2012). Media use, face-to-face communication, media multitasking, and social well-being among 8- to 12-year- old girls. Developmental Psychology, 48, 327–336. https://doi.org/10.1037/ a0027030
Peterson, R. A. (1994). A Meta-Analysis of Cronbach’s Coefficient Alpha. Journal of Consumer Research, 21(2), 381–391. https://doi.org/10.1086/209405
Pintér, R. & Hack-Handa, J. (2017). Kell-e Netflix a magyaroknak? A Netflix belépése a magyar piacra fogyasztói szemszögből. Médiakutató, 17(3-4), 69-81. http:// epa.oszk.hu/03000/03056/00064/pdf/EPA03056_mediakutato_2016_ősz- tél_069-081.pdf
Ponterotto, J. G., & Ruckdeschel, D. E. (2007). An Overview of Coeffi cient Alpha and a Reliability Matrix for Estimating Adequacy of Internal Consistency Coeffi cients with Psychological Research Measures. Perceptual and Motor Skills, 105(3), 997–1014. https://doi. org/10.2466/pms.105.3.997-1014
Prasad, S. S. (2021). Impact of OTT media on the society: insights from path analysis. Asia-Pacific Journal of Business Administration, 14(2), 185-198. https://doi. org/10.1108/APJBA-06-2021-0261
Raffer, A. (2020, June 14). Streamelni vagy nem streamelni, ez itt a kérdés. Hajdú-Bihar Vármegyei Hírportál, https://www.haon.hu/helyi-eletstilus/2020/06/streamelni- vagy-nem-streamelni-ez-itt-a-kerdes
Reddy, L. S., & Kulshrestha, P. (2019). Performing the KMO and Bartlett’s Test for Factors Estimating the Warehouse Efficiency, Inventory and Customer Contentment for E-retail Supply Chain. International Journal for Research in Engineering Application & Management (IJREAM), 5(9), 1-13. http://ijream.org/ papers/IJREAMV05I0957001.pdf
Reinikainen, H., Kari, J. T., & Luoma-Aho, V. (2020). Generation Z and organizational listening on social media. Media Communication, 8(2), 185-196. https://doi. org/10.17645/mac.v8i2.2772
Rodé, M. (2018). Virtuális rabszolgaság. Kolor Optika Bt., Budapest. https://mek.oszk. hu/22300/22385/22385.pdf
Rózsa, S., Hupuczi, E., Martoni, L., Birkás, B., Hartung, I., Hargitai, R., Varga, J., Láng, A., Tiringer, I., & Kállai, J. (2019). A Tellegen Abszorpciós Skála részletes pszichometriai elemzése. Mentálhigiéné és Pszichoszomatika, 20(1), 35–77. http://real.mtak.hu/94101/1/0406.20.2019.003.pdf
Gubik, S. A., Farkas, Sz., & Kása, R. (2018). A tervezett magatartás elméletének alkalmazása a vállalkozói hajlandóság alakulásának magyarázatára. Közgazdasági Szemle, 65(1), 74-101. https://doi.org/10.18414/KSZ.2018.1.74
Safar, A., & Alkhezzi, F. (2016). Students’ Perspectives of the Impact of Online Streaming Media on Teaching and Learning at the College of Education at Kuwait University. Eurasia Journal of Mathematics, Science & Technology Education, 12(12), 2975- 2989. https://doi.org/10.12973/eurasia.2016.02317a
Sahu, G., Gaur, L., & Singh, G. (2021). Applying niche and gratification theory approach to examine the users’ indulgence towards over-the-top platforms and conventional TV. Telematics and Informatics, 65, 101713. https://doi.org/10.1016/j. tele.2021.101713
Sajtos, L. & Mitev, A. (2007). SPSS kutatási és adatelemzési kézikönyv. Alinea Kiadó, Budapest.
Sajtos, L., & Fache, M. (2005). A strukturális egyenlőségek módszere és alkalmazása a marketingkutatásban. Marketing & Menedzsment, 39(4–5), 99–111. https:// journals.lib.pte.hu/index.php/mm/article/view/1396
Saris, W. E., & Stronkhorst, H. (1984). Causal modelling in nonexperimental research.
Sociometric Research Foundation, Amsterdam.
Savage, S. B. (2006). Making Sense of Generation Y: The World View of 15- to 25-Year- Olds (pp. 17-22). Church House, London.
Schreiber, J.B., Stage, F.K., King, J., Nora, A., & Barlow, E.A. (2006). Modeling and Confirmatory Factor Analysis Results: A Review. The Journal of Educational Research, 99(6), 323–338. https://doi.org/10.3200/joer.99.6.323-338
Shim, D., Lee, C., & Oh, I. (2022). Analysis of OTT Users’ Watching Behavior for Identifying a Profitable Niche: Latent Class Regression Approach. Journal of Theoretical and Applied. Electronic Commerce Research, 17(4), 1564-1580. https://doi.org/10.3390/jtaer17040079
Shin, S., & Park, J. (2021). Factors affecting users’ satisfaction and dissatisfaction of OTT services in South Korea. Telecommunications Policy, 45(9), 102203. https:// doi.org/10.1016/j.telpol.2021.102203
Silva, J.M.S.D., & Lima, R.C.D.A. (2022). Is Netflix a threat to the cable TV industry? Evidence from Brazil. Telecommunications Policy, 46(3), 102274. https://doi. org/10.1016/j.telpol.2021.102274
Simon-Kucher & Partners (2019, May 2). New Study: Streaming services rapidly replacing traditional TV. Businesswire. https://www.businesswire.com/news/ home/20190502005718/en/
Tabachnick, B.G., & Fidell, L.S. (2007). Using multivariate statistics (5th ed.). Allyn and Bacon, Boston MA.
Tari, A. (2011). Z generáció. Tericum Kiadó Kft., Budapest.
Taylor, R. (2020, January 16). How Gen Z and Millennials Watch Video Content & What That Means for Production Teams. Rev. Captions, Media & Entertainment. https://www.rev.com/blog/caption-blog/how-gen-z-and-millennials-consume- video-content-what-that-means-for-production-teams?fbclid=IwAR10bJRDLoL qvLqHaR5l_couF0WUhqICWjAqBoI3-d1aNvs1-yACB55sZ10
Towner, T., & Lego Munoz, C. (2016). Boomers versus Millennials: Online Media Influence on Media Performance and Candidate Evaluations. Social Sciences, 5(4), 56. https://doi.org/10.3390/socsci5040056
Twenge, J. M. (2000). The age of anxiety? The birth cohort change in anxiety and neuroticism, 1952-1993. Journal of Personality and Social Psychology, 79(6), 1007-1021. https://doi.org/10.1037/0022-3514.79.6.1007
van Eck Duymaer van Twist, A., & Newcombe, S. (2021). Strauss-Howe Generational Theory. In J. Crossley, & A. Lockhart (Eds.) Critical Dictionary of Apocalyptic and Millenarian Movements. https://www.cdamm.org/assets/articlePDFs/13346- strauss-howe-generational-theory.pdf
Wadhawan, S., & Sinha, S. (2017). A Study of Employer Branding on Employee Attitude.
International Journal of Applied Business and Economic Research, 15(1), 363–
https://serialsjournals.com/abstract/30073_28.pdf
Wanat, G. (2022, December 2). Reasons for using paid VOD services in Poland 2020. Statista. https://www.statista.com/statistics/1033249/poland-reasons-for-using- paid-vod-services/
Werenowska, A., & Rzepka, M. (2020). The Role of Social Media in Generation Y Travel Decision-Making Process (Case Study in Poland). Information, 11(8), 396. https://doi.org/10.3390/info11080396
Westcott, K., Arbanas, J., Arkenberg, C., Auxier, B., Loucks, J., & Downs, K. (2022, March 28). Digital media trends, 16th edition: Toward the metaverse. https:// www2.deloitte.com/us/en/insights/industry/technology/digital-media-trends- consumption-habits-survey/summary.html
Wheaton, B., Muthen, B., Alwin, D.F., & Summers, G.F. (1977). Assessing reliability and stability in panel models. Sociological Methodology, 8, 84–136. https://doi. org/10.2307/270754
Yadav, G., & Rai, J. (2017). The Generation Z and their Social Media Usage: A Review and a Research Outline. Global Journal of Enterprise Information System, 9, 110- 116. https://doi. org/10.18311/gjeis/2017/15748
Yousaf, A., Mishra, A., Taheri, B., & Kesgin, M. (2021). A cross-country analysis of the determinants of customer recommendation intentions for over-the-top (OTT) platforms. Information & Management, 58(8), 103543. https://doi.org/10.1016/j. im.2021.103543
Zemoga (n.d.). OTT trends and future predictions. https://marketing.zemoga.com/ott- trends
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Acta Economica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.