EXPLAINING VARIABILITY IN THE LABOUR MARKET USING PRINCIPAL COMPONENT ANALYSIS

Authors

DOI:

https://doi.org/10.63356/ace.2025.005

Keywords:

labour market , variability , principal component analysis

Abstract

This article explores the factors driving labour market variability using principal component analysis (PCA) on data from 191 countries. With a focus on economic, demographic, and institutional variables, it aims to identify the primary components influencing labour market dynamics on a global level. Key variables include GDP per capita, Human Development Index (HDI), unemployment rates, poverty rates, indices on the labour freedom index and perception of corruption, average wages, and demographic indicators such as population structure and migration rates. Following data collection, the study employed multiple imputation to handle missing values, ensuring a robust dataset suitable for PCA.

The PCA results reveal that the first principal component, comprising indicators of economic prosperity and human development, such as GDP per capita and HDI, explains the largest share of variability in the labour market data. Subsequent components, though contributing less individually, highlight structural factors, including average working hours, urbanization, and demographic influences like migration and age distribution. Together, these components suggest that high standards of living and economic stability play a critical role in shaping the labour market, while secondary factors like urban demographics and migration trends also impact labour dynamics.

These findings support the hypothesis that economic and human development indicators significantly drive labour market variability. Implications for policymakers include focusing on economic stability and enhanced social outcomes to foster workforce engagement. The study underscores the importance of tailoring policies to account for demographic factors and calls for further research incorporating additional socioeconomic variables to deepen understanding of labour market dynamics.

References

Adam, A., Garas, A., Katsaiti, M. S., & Lapatinas, A. (2021). Economic complexity and jobs: An empirical analysis. Economics of Innovation and New Technology, 31(1), 25–52. https://doi.org/10.1080/10438599.2020.1859751

Bartlett, M. S. (1951). The effect of standardization on a χ2 approximation in factor analysis. Biometrika, 38(3/4), 337-344. https://doi.org/10.2307/2332580

Ben-Porath, Y. (1973). Labor-force participation rates and the supply of labor. Journal of Political Economy, 81(3), 697-704. https://doi.org/10.1086/260065

Blanchard, O., & Katz, L. (1992). Regional evolutions. Brookings Papers on Economic Activity, 23(1), 1-76.

Boeri, T., & Van Ours, J. (2021). The economics of imperfect labor markets (3rd ed.). Princeton University Press.

Borjas, G. (2020). Labor economics (8th ed.). McGraw-Hill Education, New York.

Bracha, A., Gneezy, U., & Loewenstein, G. (2015). Relative pay and labor supply. Journal of Labor Economics, 33(2), 297-315. https://doi.org/10.1086/678494

Cattell, R. (1978). The scientific use of factor analysis in behavioral and life sciences. Plenum Press, New York.

CIA. (2024). The World Factbook. https://www.cia.gov/the-world-factbook/

Gorsuch, R. (2014). Factor analysis (2nd ed.). Routledge, London.

Greenacre, M., Groenen, P., Hastie, T., D’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(100), 1-10. https://doi.org/10.1038/s43586-022-00184-w

Hair, J., Black, W., Babin, B., & Anderson, R. (2018). Multivariate data analysis (8th ed.). Cengage Learning EMEA, Boston.

Harvey, D. T., & Hanson, B. A. (2024). A comparison of functions for PCA. https://cran.r-project.org/web/packages/LearnPCA/vignettes/Vig_07_Functions_PCA.pdf

Harvey, D. T., & Hanson, B. A. (2024). The math behind PCA. https://cran.r-project.org/web/packages/LearnPCA/vignettes/Vig_06_Math_Behind_PCA.pdf

Hout, M. C., Papesh, M. H., & Goldinger, S. D. (2013). Multidimensional scaling. Wiley Interdisciplinary Reviews: Cognitive Science, 4(1), 93–103. https://doi.org/10.1002/wcs.1203

International Labor Organization. (2024). ILOSTAT. https://ilostat.ilo.org/data/

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-292. https://doi.org/10.2307/1914185

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(10), 141-151. https://doi.org/10.1177/001316446002000116

Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36. https://doi.org/10.1007/BF02291575

Kherif, F., & Latypova, A. (2020). Principal component analysis. In A. Mechelli & S. Vieira (Eds.), Machine Learning (pp. 209–225). Academic Press. https://doi.org/10.1016/B978-0-12-815739-8.00012-2

King, J. E. (1990). Labour economics (2nd ed.). Red Globe Press, London.

Lloret-Climent, M., Nescolarde-Selva, J.-A., Mora-Mora, H., Alonso-Stenberg, K., & Mollá-Sirvent, R. (2020). Modeling complex social systems: A new network point of view in labour markets. IEEE Access, 8, 92110-92119.

Madley-Dowd, P., Hughes, R., Tilling, K., & Heron, J. (2019). The proportion of missing data should not be used to guide decisions on multiple imputation. Journal of Clinical Epidemiology, 110, 63-73. https://doi.org/10.1016/j.jclinepi.2019.02.016

Nunnally, J. (1978). Psychometric theory (2nd ed.). McGraw-Hill, new York.

Osborne, J. W., & Costello, A. B. (2004). Sample size and subject to item ratio in principal components analysis. Practical Assessment, Research, and Evaluation, 9, 1-9. https://doi.org/10.7275/ktzq-jq66

Pieroni, L., & Pompei, F. (2008). Labour market flexibility and innovation: Geographical and technological determinants. International Journal of Manpower, 29(3), 216-238. https://doi.org/10.1108/01437720810878897

R Project. (2025). Kmeans: K-Means Clustering. https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans

R Project. (2024). Check suitability of data for Factor Analysis (FA) with Bartlett’s Test of Sphericity and KMO. https://search.r-project.org/CRAN/refmans/performance/html/check_factorstructure.html

R Project. (2025). Find the Kaiser, Meyer, Olkin Measure of Sampling Adequacy. https://search.r-project.org/CRAN/refmans/psych/html/KMO.html

The Global Economy. (2024). About the site. https://www.theglobaleconomy.com/

Tobias, S., & Carlson, J. E. (1969). Brief report: Bartlett’s test of sphericity and chance findings in factor analysis. Multivariate Behavioral Research, 4(3), 375–377. https://doi.org/10.1207/s15327906mbr0403_8

Umargono, E., Suseno, J. E., & Gunawan, S. K. V. (2020). K-means clustering optimization using the elbow method and early centroid determination based on mean and median formula. In Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC 2019) (pp. 121–129). Atlantis Press. https://doi.org/10.2991/assehr.k.201010.019

UNDP. (2024, February 2). Human development index (HDI). https://hdr.undp.org/data-center/human-development-index#/indicies/HDI

Van Buuren, S. (2012). Flexible imputation of missing data. Chapman & Hall/CRC Press, New York.

Van Ginkel, J. (2023). Handling missing data in principal component analysis using multiple imputation. In L. Van der Ark, W. Emons, & R. Meijer (Eds.), Essays on contemporary psychometrics (pp. 141-161). New York, NY: Springer. https://doi.org/10.1007/978-3-031-10370-4_8

Zamfir, A. M., Năstasă, A., Aldea, A., & Molea, R. (2021). Factors shaping labour market participation. Postmodern Openings, 12(1), 91-101. https://doi.org/10.18662/po/12.1/247

Downloads

Published

2025-06-25

Issue

Section

Review Scientific Paper

How to Cite

EXPLAINING VARIABILITY IN THE LABOUR MARKET USING PRINCIPAL COMPONENT ANALYSIS. (2025). Acta Economica, 23(42), 101-122. https://doi.org/10.63356/ace.2025.005

Similar Articles

1-10 of 264

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>