STOCHASTIC MODELING OF OPTIMAL LOGISTICS IN THE FUNCTION OF MAXIMIZING INTERNATIONAL BUSINESS EFFICIENCY OF SMEs

Authors

DOI:

https://doi.org/10.7251/ACE2135009L

Keywords:

efficient operation, optimal management, model forecasting, realistic metrics, international competitive position

Abstract

The concept of business activity conditions specific procedures and activities in order to maximize the difference between output and input variables while taking into account the uncertainty of the business outcome. The business outcome is determined by a number of factors that are under the control of the decision maker. However, a number of factors are conditioned by stochastic quantities, which obey the laws of probability of a random variable whose value the decision maker cannot influence but must anticipate and respect in the business decision making process. Conditionality of business results with the market component refers to user expectations, and it requires a model approach by which the uncertain business future is recomposed into business expectations, with a high level of reliability. Modeling of the system by the process of mathematical simulation enables the calculation of variants of business future in the present time without realizing business strategies before their selection and classification. The modeling process includes business system analysis, factor selection, qualitative and quantitative expression, classification of variables, functional linking, formulation of probability distribution of random variables, and the choice of time frame for simulation. The process of mathematical simulation indicates the management consequences of business alternatives, thus the decision maker is guided by business expectations and recruits business logistics in accordance with the decision. The simulation model is adapted to the specific management problem, specific conditions and circumstances of decision making. It does not have a universal character and must be constructed specifically for each management situation.

References

Alpeza, M., Delić, A., Has, M., Koprivnjak, T., Jurić, P. M., Oberman, M. & Banović, R. Š. (2020). Izvješće o malim i srednjim poduzećima u Hrvatskoj – 2020. Zagreb, Hrvatska: CEPOR Centar za obiteljska poslovanja i prijenos sredstava.

Christian, K. (2006). Michael Porter¨s Competitivness Framework - Recent Learnings and New Research Priorities. Journal of Industry, Competition and Trade, 6(2), 115-136. DOI: 10.1007/s10842-006-9474-7

Erić, D., Behara, I., Đuričin, S. & Kecman, N. (2012). Finansiranje malih i srednjih preduzeća u Srbiji. Instititut ekonomskih nauka: Privredna komora Srbije, 44-57.

Landika, M. (2021). Linearno programiranje u funkciji usklađivanja upravljačke vizije i realnosti. Banja Luka, Bosna i Hercegovina: Panevropski univerzitet “Apeiron”.

Landika, M., Sredojević, V., Šupuković, V. & Peulić, V. (2021). Istraživanje i analiza. Banja Luka, Bosna i Hercegovina.

Mitrović, J. (2004). Kreiranje novih organizacionih struktura preduzeća u uslovima globalnog poslovnog okruženja. Ekonomski pogledi, 4(1-2),165-183.

Sredojević, V. (2016). Razvoj malih i srednjih preduzeća kao odgovor na ekonomsku krizu u Republici Srpskoj. Doktorska disertacija. Banja Luka, Bosna i Hercegovina: Panevropski univerzitet “Apeiron”

Sudarević, T. (2009). Ciljani marketing II. Subotica, Srbija: Ekonomski fakultet.

Tipurić, D. (1999). Konkurentska prednost preduzeća - izbor između niskih troškova i diferencijacije, Poslovna analiza i upravljanje. Zagreb, Hrvatska: Ekonomski fakultet.

Todorović, J. (2003). Strategijski i operativni menadžment. Beograd, Srbija: Conzit.

Vokić, N. P. (2004). Menadžment ljudskih potencijala u velikim hrvatskim preduzećima. Ekonomski pregled, 55(5 – 6), 449 - 261. https://hrcak.srce.hr/16299

Downloads

Published

2021-12-31

How to Cite

Landika, M. ., Sredojević, V. ., Šupuković, V. ., & Peulić, V. . (2021). STOCHASTIC MODELING OF OPTIMAL LOGISTICS IN THE FUNCTION OF MAXIMIZING INTERNATIONAL BUSINESS EFFICIENCY OF SMEs. Acta Economica, 19(35), 9–18. https://doi.org/10.7251/ACE2135009L

Issue

Section

Original Scientific Papers

Most read articles by the same author(s)