The use of conjoint analysis to review the attractiveness of credit conditions


  • Дарко Милуновић Економски факултет Универзитета у Бањој Луци
  • Дарија Милуновић НЛБ Развојна банка, А.Д. Бања Лука


Aggregate demands, loan offer, conjoint analysis


The increase in aggregate demand is one of the primary goals of every economy. By achieving this goal, many positive effects in economy are also achieved which is manifested through increase in consumption, investment and creating a better social environment. The state has the key role in achieving this goal, with its instruments and policies it directs economy toward demand increase. Although all economies aspire to this goal, many are not in position to realize the goal they have set for themselves.

The alternative, in an effort to increase aggregate demand, may be the banking sector. Increase in volume of loans directly influences the growth of demand. Commercial banks, like all companies, strive to continually increase their value on the market and to better position themselves. One way to succeed in doing so is to increase the income. Given the specificity of commercial banking, their goal is achieved, inter alia, by improving of lending. In order to increase income on this basis, a very important prerequisite is the formation of attractive credit offers with the strong emphasis on respecting the views of clients on this issue. To respect and value clients` views means identifying key factors and adjusting the offer to them.

The power of conjoint analysis is that it allows us to get the answer to this problem. The algorithm of this analysis is a multivariate procedure to measure the preferences of bank clients regarding the loan attributes. Conjoint analysis relies on a survey of bank clients with the representative set of attributes that are ranked according to clients` preferences. Obtained quantitative informations can be used to model the credit offer. For example, one commercial bank is interested in forming a new attractive credit offer and wants to study the influence of several factors (attributes) on client preferences in order to determine which factor is the most important one.


Ковачић, З. J. (1994). Мултивариациона анализа. Београд: Универзитет у Београду

Malhorta, N. K. (1993). Marketing Research – An applied orientation. New Jersy: Prentice – Hall, Inc.

Комић, Ј., Ловрић, М., Стевић, С. (2006). Статистичка анализа. Бања Лука: Универзитет у Бањој Луци

Everitt, B.S. (2006). Te Cambridge Dictionary of Statistic. Cambridge University Press, The Edinburgh Building, Cambridge cb2 2ru, UK.

Armitage, P., Colton, T. (2005). Encyclopedia of Biostatistics. [8 vols] 2nd edition.

Chakrapani, C. ed., (2000). Marketing Research-State of the Art Perspectives. Chicago: American Marketing Association,

Krzanowski, W.J., Marriot, F.H.C. (1994). Multivariate Analysis. London: Part 1, Edward. Arnold, (MV1)

Chernick, M., and Frits, R.H. (2003). Introductory Biostatisticsfor the Health Science - Modern Applications Including Bootstra. New Jersey: Hoboken - John Wiley & Sons, Inc.,

Härdle, W.K., Simar, L. (2007). Applied Multivariate Statistical Analysis. 2nd Edition. Berlin Heidelberg: Springer – Verlag

Orme, B. (2005). Getting Started with Conjoint Analysis. Madison: WI: Research Publishers LLC

Reyment, A. R., Savazzi, E. (1999). Aspects of Multivariate Statistical Analysis in Geology. Amsterdam: Elsevier Science B.V.

Aitkin, M., Anderson, D., Francis, B., Hinde, J. (1989). Statistical Modelling in GLIM. Oxford: Oxford University Press

Goldstein, H. (1995). Multilevel Statistical Models. Second Edition. London: Edward


Huber, P. J. (1981). Robust Statistics. New York: John Wiley and Sons

Morgan, J. N., Messenger, R. C. (1973). THAID: a Sequential Search Program for the Analysis of Nominal Scale Dependent Variables. Survey Research Center, Institute for Social Research, University of Michigan

Montgomery, D.B., Wittink, D.R. (1980). The Predictive Validity of Conjoint Analysis for Alternative Aggregation Schemes, in D.B. Montgomery and D.R. Wittink (eds.). Market Measurement and Analysis, Marketing Science Institute, Cambridge, Massachusetts, 298309.

Васић, В., Рајић, В. (2007). “Multivariate Conjoint Data Analysis”. Београд: Quantitative Economics and Finance, International Conference: Contemporary Challenges of Teory and Practice in Economics. стр.205- 215.

Васић, В., Банићевић, Д. (2007). “Примена конџоинт анализе у евалуацији е-трговине”. Палић: VII Међународна конференција о електронској трговини и електронском пословању - Е-ТРГОВИНА 2007. стр.220-225.

Васић, В., Банићевић, Д. (2007). Алгоритам конџоинт анализе у формирању атрактивних стамбених кредита. Копаоник: XIII научно -стручна конференција YU INFO 2007. (6 страна, CD изд.)

Green, P., Srinivasan, V. (1978). Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research, vol 5, September 1978, pp. 103-123.

Green, P. Carroll, J., Goldberg, S. (1981). A general approach to product design optimization via conjoint analysis. Journal of Marketing, vol 43, summer 1981, pp. 17-35.

Srinivasan, V. (1988), A Conjunctive-Compensatory Approach to the Self-Explication of Multiattributed Preferences. Decision Sciences, Vol. 19, Spring 1998, pp. 295-305.

Green, P. E., Srinivasan V. (1990). Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice. Journal of Marketing, Vol. 54, October 1990, pp. 3-19.

Cattin, P., Wittink. D.R. (1982). Commercial Use of Conjoint Analysis: A Survey, Journal of Marketing. 46 (Summer), pp. 44-53.

Green, P.E., Krieger, A.M. (1991). Segmenting Markets with Conjoint Analysis, Journal of Marketing. 55 (October), pp. 20-31.

Johnson, R.M. (1987). Adaptive Conjoint Analysis, 1987 Sawtooth Software Conference Proceedings. Ketchum, ID: Sawtooth Software, pp. 253-65.

Louviere, J. J. (1991). Analyzing decision making metric conjoint analysis. Sage University

Monahan, J. F. (2001). Numerical Methods of Statistics. Cambridge: Cambridge University Press. [62, 296, 435]

Wittink, D., Vriens, M., Burhenne, W. (1992). Commercial Use of Conjoint Analysis in Europe: Results and Critical Reflections. Sawtooth Softver, Inc. Research paper series.

DeSarbo, W.S., Wedel, M., Vriens, M., Ramaswamy V. (1992). Latent Class Metric Conjoint Analysis. Marketing Letters, forthcoming

Leica Microsystems. (2009). History of conjoint analysis

Аssociates AJJAN. „Conjoint analysis specialists”.

Robert J. Dolan. (1990). Conjoint analysis.

Market research for decision makers (gr. of autors) „Understanding choice making and marketing“




How to Cite

Милуновић, Д., & Милуновић, Д. (2012). The use of conjoint analysis to review the attractiveness of credit conditions. Acta Economica, 10(16), 299–316. Retrieved from



Review article